Gravity as a Nonholonomic Almost Kähler
نویسنده
چکیده
A geometric procedure is elaborated for transforming (pseudo) Riemanian metrics and connections into canonical geometric objects (metric and nonlinear and linear connections) for effective Lagrange, or Finsler, geometries which, in their turn, can be equivalently represented as almost Kähler spaces. This allows us to formulate an approach to quantum gravity following standard methods of deformation quantization. Such constructions are performed not on tangent bundles, as in usual Finsler geometry, but on spacetimes enabled with nonholonomic distributions defining 2+2 splitting with associate nonlinear connection structure. We also show how the Einstein equations can be redefined in terms of Lagrange–Finsler variables and corresponding almost symplectic structures and encoded into the zero–degree cohomology coefficient for a quantum model of Einstein manifolds.
منابع مشابه
Deformation Quantization of Nonholonomic Almost Kähler Models and Einstein Gravity
Nonholonomic distributions and adapted frame structures on (pseudo) Riemannian manifolds of even dimension are employed to build structures equivalent to almost Kähler geometry and which allows to perform a Fedosov-like quantization of gravity. The nonlinear connection formalism that was formally elaborated for Lagrange and Finsler geometry is implemented in classical and quantum Einstein gravity.
متن کاملEinstein Gravity in Almost Kähler Variables and Stability of Gravity with Nonholonomic Distributions and Nonsymmetric Metrics
We argue that the Einstein gravity theory can be reformulated in almost Kähler (nonsymmetric) variables with effective symplectic form and compatible linear connection uniquely defined by a (pseudo) Riemannian metric. A class of nonsymmetric theories of gravitation (NGT) on manifolds enabled with nonholonomic distributions is analyzed. There are considered some conditions when the fundamental g...
متن کاملEinstein Gravity as a Nonholonomic Almost Kähler Geometry, Lagrange–finsler Variables, and Deformation Quantization
A geometric procedure is elaborated for transforming (pseudo) Riemanian metrics and connections into canonical geometric objects (metric and nonlinear and linear connections) for effective Lagrange, or Finsler, geometries which, in their turn, can be equivalently represented as almost Kähler spaces. This allows us to formulate an approach to quantum gravity following standard methods of deforma...
متن کاملBranes and Quantization for an A–Model Complexification of Einstein Gravity in Almost Kähler Variables
The general relativity theory is redefined equivalently in almost Kähler variables: symplectic form, θ[g], and canonical symplectic connection, D̂[g] (distorted from the Levi–Civita connection by a tensor constructed only from metric coefficients and their derivatives). The fundamental geometric and physical objects are uniquely determined in metric compatible form by a (pseudo) Riemannian metri...
متن کاملFinsler and Lagrange Geometries in Einstein and String Gravity
We review the current status of Finsler–Lagrange geometry and generalizations. The goal is to aid non–experts on Finsler spaces, but physicists and geometers skilled in general relativity and particle theories, to understand the crucial importance of such geometric methods for applications in modern physics. We also would like to orient mathematicians working in generalized Finsler and Kähler g...
متن کامل